Training sequence based frequency-domain channel estimation for indoor diffuse wireless optical communications
نویسندگان
چکیده
Channel estimation is a key technology for wireless optical communication (WOC) systems. Based on the training sequence (TS), this article develops three frequency domain (FD) channel estimation approaches for diffuse wireless optical channels. Considering the propagation property of light and the characteristics of optical modulation, this article establishes a link model for the indoor WOC systems. Using the established link model, three FD channel estimation methods, such as the LS method, the minimummean square error (MMSE) method and the ORL-MMSE method are proposed. The computational complexity analysis gives time complexities of the three channel estimation methods in FD. This article also evaluates the performance of the proposed three methods by computer simulation, measuring in terms of MSE and BER, respectively. Further more, based on the Cramer–Rao Bound theorem, optimal TSs are found and tabulated for different channel responses and TS lengths. By using the optimal TSs, channel estimation errors measured by BER performance are also investigated.
منابع مشابه
Performance of the Wavelet Transform-Neural Network Based Receiver for DPIM in Diffuse Indoor Optical Wireless Links in Presence of Artificial Light Interference
Artificial neural network (ANN) has application in communication engineering in diverse areas such as channel equalization, channel modeling, error control code because of its capability of nonlinear processing, adaptability, and parallel processing. On the other hand, wavelet transform (WT) with both the time and the frequency resolution provides the exact representation of signal in both doma...
متن کاملIndoor Non-directed Optical Wireless Communications - Optimization of the Lambertian Order
For an indoor non-directed line of sight optical wireless communication (NLOS-OWC) system we investigate the optimized Lambertian order (OLO) of light-emitting diodes (LEDs). We firstly derive an expression for the OLO from a conventional Lambertian LED model. Then, we analyze the indoor multi-cell NLOS-OWC channel characteristics including the optical power distribution and the multipath time ...
متن کاملChallenge of Channel Estimations and Its Way Out in MIMO OFDM Systems for Mobile Wireless Channels
In current common channel estimation schemes for MIMO OFDM systems, channel state information is usually achieved by estimating channels according to frequency domain pilot sequences. However, when the length of MIMO OFDM symbols is larger than that of wireless channel delay, there are two intractable issues in the case of cellular fast fading channel scenarios with large numbers of users, i.e....
متن کاملIEEE Wireless Communication, 2003, pp. 64-72 A FEATURE EXTRACTION AND PATTERN RECOGNITION RECEIVER EMPLOYING WAVELET ANALYSIS AND ARTIFICIAL INTELLIGENCE FOR SIGNAL DETECTION IN DIFFUSE OPTICAL WIRELESS COMMUNICATIONS
Optical Wireless diffuse indoor infrared (IR) communication systems have as yet large unrealised bandwidths that are not subject to the same regulatory control as Radio Frequency (RF) systems. Usually, wellestablished RF techniques are used to combat channel imperfections for IR implementations. Here, we introduce a novel receiver system based on the multi-resolution time-frequency feature extr...
متن کاملA Fast Adaptive Tomlinson-Harashima Precoder for Indoor Wireless Communications
A fast adaptive Tomlinson Harashima (T-H) precoder structure is presented for indoor wireless communications, where the channel may vary due to rotation and small movement of the mobile terminal. A frequency-selective slow fading channel which is time-invariant over a frame is assumed. In this adaptive T-H precoder, feedback coefficients are updated at the end of every uplink frame by using sys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Wireless Comm. and Networking
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012